Using Support Vector Machines for Lane-change Detection
نویسندگان
چکیده
Driving is a complex task that requires constant attention, and intelligent transportation systems that support drivers in this task must continually infer driver intentions to produce reasonable, safe responses. In this paper we describe a technique for inferring driver intentions, specifically the intention to change lanes, using support vector machines (SVMs). The technique was applied to experimental data from an instrumented vehicle that included both behavioral data and environmental data. Comparing these results to recent results using a novel “mind-tracking” technique, we found that SVMs outperformed earlier algorithms and proved especially effective in early detection of driver lane changes.
منابع مشابه
On-Road Vehicle and Lane Detection
We implement lane detection using edge detection, Hough transforms, and vanishing point filtering in Hough space; the car detection is implemented by using histogram of oriented gradients feature descriptors and classified by linear support vector machines. Hard-negative mining is applied to alleviate detection of false positives; with the information of vanishing point along with prior knowled...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملSupport Vector Machines For Understanding Lane Color and Sidewalks
Understanding road features such as lanes, the color of lanes, and sidewalks in a live video captured from a moving vehicle is essential to build video-based navigation systems. In this paper, we present a novel idea to understand the road features using support vector machines. Various feature vectors including color components of road markings and the difference between two regions, i.e., cho...
متن کامل